
автоматизированная проверка в пусконаладочные работы в профилактическое обслуживание

# Использование средств автоматизации при вводе в эксплуатацию и техническом обслуживании устройств РЗА



# В данной статье вы найдете ответы на следующие вопросы:

- В чем заключается автоматизация проверки функций цифровых устройств релейной защиты и автоматики (ЦРЗА)?
- Каковы варианты автоматизации проверок на отдельных этапах пуска и технического обслуживания ЦРЗА?

# Авторы

Григорьев В. В., Иванов В. Л., Степанов В. А., Шнеерсон Э. М.

внедрение цифровых устройств релейной защиты и автоматики (ЦРЗА) на фоне имеющегося дефицита квалифицированного обслуживающего персонала не привело во многих случаях к ожидаемому повышению показателей релейной защиты. Это связано прежде всего с ошибками, обусловленными «человеческим фактором», вносимыми на отдельных стадиях внедрения ЦРЗА (проектирование, пусконаладочные работы, эксплуатация) [1, 2].

Указанное обусловлено в том числе функциональной сложностью многих ЦРЗА вследствие большого объема защитных и дополнительных функций, программируемых логическо-функциональных связей, параметров и сообщений, которые необходимо контролировать в процессе проверки правильности функционирования ЦРЗА. Принципиальные затруднения вызывает и тот факт, что отсутствие законченных блоков и программный уровень формирования структуры ЦРЗА во многих случаях затрудняет проверку выбранных функций традиционными методами вследствие одновременного пуска других функций. Учет этого фактора приводит к необходимости применения дополнительных мер (например, перепрограммирования терминалов ЦРЗА) для исключения влияния непроверяемых функций в процессе проверки, что, в свою очередь, ставит под вопрос корректность таких проверок с учетом возможности внесения ошибок при восстановлении конфигурации терминалов. Полноценная проверка традиционными методами значительного объема функций, параметров и сообщений ЦРЗА, существенно большего, чем у защит предыдущих поколений, потребует не только наличия квалифицированного обслуживающего персонала, но и существенных затрат времени и средств.

Одним из основных путей выхода из создавшегося положения является использование средств автоматизации, в первую очередь при выполнении пусконаладочных работ и профилактическом обслуживании ЦРЗА. Указанное обеспечивает прежде всего:

- повышение качества и достоверности проверки вследствие возможности подведения к ЦРЗА набора последовательностей, содержащих значительное количество аналоговых и дискретных сигналов, необходимых для полноценной проверки отдельных функций ЦРЗА;
- необходимый объем проверки многочисленных функций ЦРЗА и фиксацию результатов проверки, отражаемых в генерируемых протоколах испытаний;
- существенное снижение затрат времени и средств на проверку ЦРЗА однотипных объектов;
- снижение требований к квалификации проверяющего персонала и уменьшение числа ошибок, обусловленных «человеческим фактором»;
- запоминание хода и результатов проверки на носителе информации (генерирование протоколов проверки) и возможность при необходимости ее быстрого повторения, в том числе при эксплуатационном обслуживании.

Ниже рассматриваются вопросы реализации элементов концепции автоматизации технического обслуживания ЦРЗА [1.2] на основе комплекса программно-технических средств, разработанных НПП «Селект» и НПП «Динамика».

## ПРОГРАММНО-ТЕХНИЧЕСКАЯ БАЗА АВТОМАТИЗАЦИИ

В качестве базовой программы автоматизации разработано специальное программное обеспечение, позволяющее создавать различные сценарии автоматической проверки функций защиты и автоматики. Это обеспечивается подведением к входам ЦРЗА (обычно шкафам) с помощью компьютерно управляемого проверочного устройства РЕТОМ-51 (61)

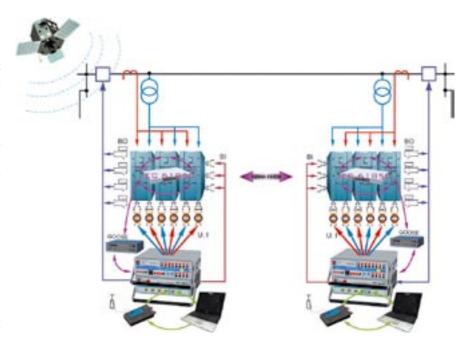



Рис. 1. Конфигурация испытательной системы при проверке дифференциальной защиты ВЛ

требуемых для текущего вида проверки комбинаций аналоговых сигналов (токов и напряжений) и дискретных сигналов с одновременным контролем генерируемых ЦРЗА выходных сигналов и сообщений. При необходимости проведения операций с большим числом входных и выходных дискретных сигналов возможно использование дополнительно приставкирасширителя числа дискретных входов/ выходов РЕТ-64/32.

Для проведения синхронных испытаний по обоим концам линии используется GPS-синхронизация на основе приставки PET-GPS к PETOM-51 (61), которая позволяет синхронно и синфазно выдавать токи и напряжения обоих удаленных полукомплектов (рис. 1). Для контроля GOOSE-сообщений (стандарт МЭК 61850) используется разработанное фирмой «Динамика» устройство РЕТ-61850, которое, взаимодействуя с РЕТОМ-51 (61), позволяет генерировать и считывать необходимые сигналы по сети Ethernet.

Базовое программное обеспечение дает возможность интегрировать отдельные модули проверяемых объектов подстанции (ПС) в иерархическую структуру, соответствующую реальной схеме ПС (рис. 2). Обращение к отдельным строкам данной структуры соответствует переходу к процессу автоматизированной проверки выбранных защитных функций элемента ПС.



Рис. 2. Реализованная на основе базовой программы иерархическая структура проверки ПС 220 кВ

- В частности, иерархическая структура ПС на примере ПС 220 кВ Подушкино включает 4 уровня:
- 1-й уровень присоединение (ЛЭП, Трансформатор, Шины, Реактор);
- 2-й уровень шкаф РЗ и А или комплекс из нескольких шкафов (панелей);
- 3-й уровень (при необходимости) уровень терминала или отдельной группы проверок;
- 4-й уровень вид проверки (проверяемая функция).




Рис. 3. Последовательность циклов при проверке функции неуспешного АПВ (КЗ АВ во второй зоне дистанционной защиты)

| Ne | Режил                       | Успоеме                                                                        | Контролируемый сигнал                                     |                               |          |      |           |                    | Общая  |
|----|-----------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|----------|------|-----------|--------------------|--------|
|    |                             |                                                                                | HARR                                                      | подкл.                        | контроль | TVIR | apeun     | оценка<br>контакта | оценка |
| 2  | Нагрузочный<br>рехим        | Нет излишних<br>срабатываний                                                   | Действие<br>защиты на<br>стилочения<br>выилючателя        | 03x113_03x85<br>(B020_7SA522) | Норма    | 0    | 0.552#    | Hopera<br>Hopera   | Норма  |
|    |                             |                                                                                |                                                           |                               | Факти.   | 0    | 14.       |                    |        |
|    |                             |                                                                                | Запрет АПВ<br>при<br>срабатывания<br>защит в<br>режиме АУ | 01x115_01x85<br>(8021_7SA522) | Hopus    | 0    | 0.552#    |                    |        |
|    |                             |                                                                                |                                                           |                               | Озипи    | 0    | 4         |                    |        |
|    |                             |                                                                                | Общий пуск<br>АПВ                                         | 01x86_01x85<br>(B06_7SA522)   | Норма    | 0    | 0,562//   |                    |        |
|    |                             |                                                                                |                                                           |                               | Фактич   | 0    |           |                    |        |
|    |                             |                                                                                | Отключение<br>выключателя<br>вручную                      | 03x66_03x71<br>(B06_6MD66)    | Норма    | 0    | 0,652//   | Hopera             |        |
|    |                             |                                                                                |                                                           |                               | Osknire  | 0    | +         |                    |        |
|    |                             |                                                                                | Вилючение<br>выключателя                                  | 03x96_03x79<br>(BO6_6MD66)    | Нориа    | 0    | 0.562#    | Норыз              |        |
|    |                             |                                                                                |                                                           |                               | Фактич   | 0    | +         |                    |        |
| 3  | K3 A8 0.95 Z2               | Отключение<br>от 22                                                            | Действие<br>защиты на<br>стильочения<br>выключателя       | 03x113_03x85<br>(B020_7SA522) | Норма    | 0-1  | 0.92/     | Hopara             | Норма  |
|    |                             |                                                                                |                                                           |                               | Фактич.  | 0-1  | 0,924     |                    |        |
| 4  | Бестоковая<br>пауза         | Включение от<br>АПВ                                                            | Вспочение<br>выспочателя                                  | 03x66_03x79<br>(B06_6MD66)    | Hopus    | 0-1  | 527       | Норма              | Норма  |
|    |                             |                                                                                |                                                           |                               | Филич    | 0→1  | 5,053**** |                    |        |
| 6  | K3 AB 0.96 Z2               | Запрет АПВ                                                                     | Запрет АПВ<br>при<br>срабатывания<br>защит в<br>режиме АУ | 01x115_01x85<br>(B021_7SA522) | Норма    | 0→1  | 0,122     | Hopera             | Hopers |
|    |                             |                                                                                |                                                           |                               | Фактич   | 0-1  | 0,183**** |                    |        |
|    |                             | Отключение<br>er 21B                                                           | Действие<br>защиты на<br>отключение<br>выключателя        | 03x113_63x85<br>(B020_7SA522) | Норма    | 0-1  | 0.1620    | Hopera             | Нормя  |
|    |                             |                                                                                |                                                           |                               | Фактич.  | 0→1  | 0,184**** |                    |        |
| 7  | Окончательное<br>опстючение | Отсутствия<br>повторного<br>включения от<br>АПВ при<br>неуспециюм<br>1-м цисте | Волючение выключателя                                     | 03x66_03x79<br>(BO6_6A/D66)   | Норма    | 0    | 627       | Норма              | Норма  |
|    |                             |                                                                                |                                                           |                               | Факти    | 0    |           |                    |        |

Рис. 4. Протокол испытаний при проверке функции неуспешного АПВ

#### АВТОМАТИЗАЦИЯ ПРОВЕРКИ ФУНКЦИЙ ЦРЗА

Для того чтобы осуществить проверку той или иной функции защиты или автоматики необходимо сформировать в общем случае с помощью проверочного устройства ряд последовательностей аналоговых (токи, напряжения) и дискретных сигналов,

подводимых к ЦРЗА, в том числе изменяющиеся во времени токи и напряжения, соответствующие доаварийному, аварийному и послеаварийному режимам защищаемого объекта, дискретные сигналы, характеризирующие состояние элементов энергосистемы (например, блок-контакты выключателя, реле положения РПВ, РПО и т.п.), сигналы,

приходящие от РЗА других объектов, сигналы управления, ускорения защит и т.п.

Проверочное устройство конфигурируется таким образом, чтобы принимать и фиксировать сигналы и сообщения, генерируемые ЦРЗА при проверке, в том числе сигналы пуска, отключения, действия отдельных функций. В зависимости от реакции проверяемого ЦРЗА проверочное устройство будет изменять последовательность генерируемых аналоговых сигналов, в частности, прекращать генерирование токов через заданное время после возникновения сигнала отключения объекта, повторно генерировать входные аналоговые сигналы при неуспешном АПВ и т.п.

Последовательности генерируемых аналоговых и дискретных сигналов образуются совокупностью отдельных (единичных) программируемых циклов. Длительность цикла может сокращаться при приходе определенных сигналов от ЦРЗА, что также программируется при задании цикла.

Оценка правильности проведенного теста производится в автоматическом режиме в каждом цикле с помощью сопоставления выходных сигналов ЦРЗА с сигналами, которые должны возникнуть при правильном функционировании устройства (оцениваются моменты возникновения и длительность возникающих дискретных сигналов). В каждом цикле возможно задание произвольного числа оценочных условий. В самом условии может анализироваться произвольное число дискретных входов.

По окончании проверки каждой функции программой формируется протокол испытаний с оценкой каждого теста «Норма» или «Ошибка» и с указанием полученных погрешностей. Оценка «Норма» возникает при полном соответствии логики и времен действия выходных контактов УРЗ, подключенных к входам испытательного оборудования, с предварительно заданными состояниями в таблицах оценок. В противном случае возникает оценка «Ошибка».

Проиллюстрируем указанное на примере проверки функции АПВ при неуспешном повторном включении. На рис. 3 и рис. 4 представлены соответственно формируемая последовательность циклов, используемых в данной проверке, и таблица протокола с результатами проверки.

Программа дает дополнительную возможность для просмотра и анализа результата выполнения каждого условия оценки (рис. 5). При выборе строки в этой таблице в нижней части окна графически показывается работа выбранного контакта совместно с



# УСЛУГИ:

СЕРВИС устройств релейной защиты и автоматики (РЗА) энергосистем различных производителей на основе автоматизации пуско-наладочных и проверочных работ с генерацией протоколов испытаний:

- наладочные работы и пуск в эксплуатацию;
- комплексные проверки аппаратуры РЗА на объекте с имитацией аварийных режимов в системе пользователя;
- обеспечение приемных испытаний;
- профилактический контроль РЗА;
- обучение персонала.

# ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Универсальный инструмент для проверки РЗА различных производителей и оформления документации - «КОМПЛЕКС»:

- генерация последовательностей аналоговых и дискретных сигналов для проверки различных функций РЗА с использованием одного или нескольких РЕТОМ 51(61), РЕТ-64/32 и РЕТ-61850;
- анализ и оценка входных дискретных сигналов и GOOSE сообщений;
- генерация протоколов проверки с выявлением ошибок и несоответствий;
- запоминание хода и результатов проверки на носителе информации с возможностью при необходимости её быстрого повторения (например, при техническом обслуживании).

# ПОСТАВКА:

ПО «КОМПЛЕКС» с инициализацией на РЕТОМ 51 (61).

000 «НПП «Селект» 428000, г.Чебоксары, ул.Анисимова, 6 т./ф. (8352) 45 26 00, e-mail:select@rzaselect.ru www.rzaselect.ru



Рис. 5. Пример таблицы оценки заданного условия (в данном случае контролируется сигнал включения в цикле АПВ)

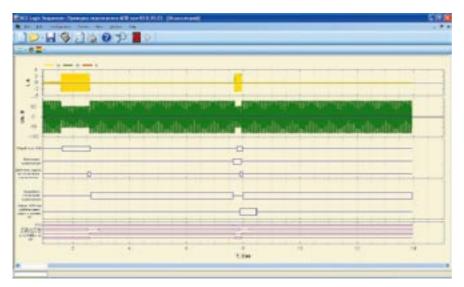



Рис. 6. Осциллограмма проверки неуспешного АПВ

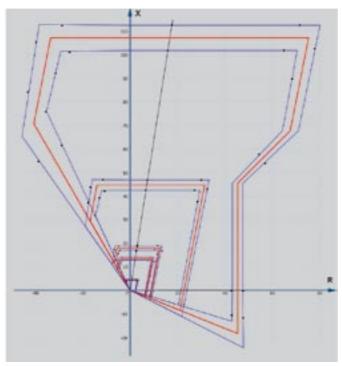



Рис. 7. Проверка характеристик срабатывания дистанционной защиты

оценочным условием. Зеленым цветом на графике отображается зона оценки, красной линией - ожидаемая работа контакта, синей – фактический результат.

В протокол комплексных испытаний для каждой проверки при необходимости вводится реальная осциллограмма проверки, фиксируемая проверочным устройством (рис. 6). В осциллограмме по выбору пользователя отображаются необходимые токи и напряжения, контактные выходы и дискретные входы испытательного устройства.

Отличительной особенностью программ проверки является динамический характер проверок, то есть скачкообразное изменение входных сигналов тока и напряжения, что максимально приближает режим испытания РЗА к реальным условиям КЗ. Алгоритм проверок характеристик срабатывания ступеней дистанционной защиты оптимизирован таким образом, что проверяются только характеристические точки (на угле линии и на изломах характеристики) - см. рис. 7. На рис. 8 приведена характеристика срабатывания из протокола испытаний дифференциальной защиты трансформатора.

## АВТОМАТИЗАЦИЯ ОТДЕЛЬНЫХ ЭТАПОВ ПУСКА И ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ЦРЗА

### Пусконаладочные и приемные испытания

Наиболее актуальным является применение средств автоматизации для проверок ЦРЗА на вновь вводимых или реконструируемых объектах. Рис. 9 поясняет возможный вариант организации проверочных работ.

Необходимыми условиями автоматизации отдельных этапов проверочных работ при наладочных (приемных) испытаниях является наличие компьютерно управляемого проверочного устройства и базового программного обеспечения, позволяющего пользователю создавать различные проверочные модули с учетом особенностей конкретных объектов. Помимо «стандартных» программ проверки отдельных функций (например, характеристик срабатывания дистанционных защит, дифференциальных защит и т.д.), ключевое значение для комплексной проверки отдельных функций, включая логические связи, при наладочных работах, а также при приемных испытаниях имеет базовое программное обеспечение, позволяющее генерировать произвольные последовательности единичных тестов и контролировать результаты проверки (например, рис. 4). Разработанные

на основе базового программного обеспечения программные модули проверки конкретного объекта открыты для наладочного персонала и допускают корректировку проверочных программ с учетом возникающих новых условий.

ОАО «ФСК ЕЭС» в 2008 году принят «Регламент по приему новой техники РЗА в эксплуатацию», предусматривающий проведение приемных испытаний при вводе новой техники РЗА.

При приемке ЦРЗА сложных объектов, целесообразно использовать, в необходимых случаях, итоговую комплексную проверку (ИКП) [2], когда при вводе в эксплуатацию производится проверка всего комплекса РЗА объекта путем имитации повреждений на объекте с соответствующими сигналами, подводимыми к входам комплекса РЗА (например, рис. 1). При этом проверяется реакция всего комплекса РЗА на различные повреждения на защищаемом объекте (внешние и внутренние повреждения, успешное / неуспешное АПВ и ОАПВ, действие УРОВ и т. д.) и, следовательно, контролируются не только ошибки при монтаже и наладке, но и возможные ошибки в проекте.

При проведении ИКП конфигурация, параметры и уставки проверяемого ЦРЗА полностью соответствуют рабочему состоянию отдельных терминалов и всего комплекса РЗА объекта, предусмотренному проектом.

Входные цепи переменного тока и напряжения отсоединены от измерительных трансформаторов и присоединены к входам испытательного устройства (ИУ). Программно управляемое ИУ генерирует сигналы переменного тока и напряжения, соответствующие различным видам КЗ внутри и вне защищаемого объекта и синхронно с необходимыми сдвигами по времени генерирует дискретные сигналы, соответствующие действию от РЗА других объектов, если они в данном случае предусмотрены. Одновременно контролируются и выходные сигналы комплекса, подаваемые на вход ИУ (например, рис.1).

Отметим, что концепция ИКП основана на принципе «черного ящика» - на входах комплекса УРЗА создаются сигналы, соответствующие различным повреждениям в энергосистеме и контролируется правильность генерируемых комплексом команд и сообщений. Поэтому необходимость специальных знаний, связанных с особенностями ЦРЗА отдельных производителей минимизируется. Ошибки, связанные с переходом от режима проверки к рабочему режиму, также минимизируются тем, что этот переход опре-

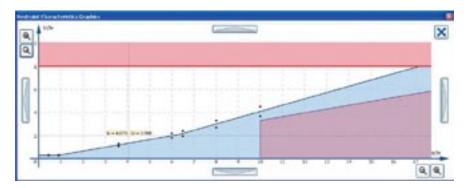
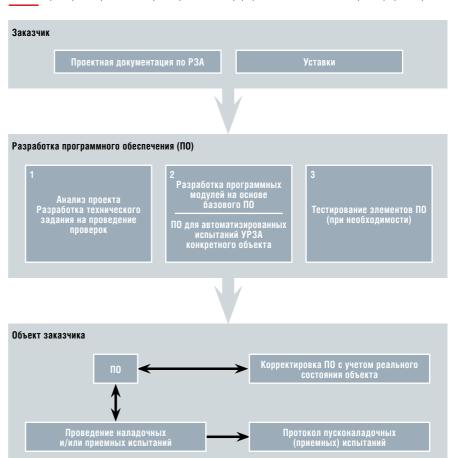
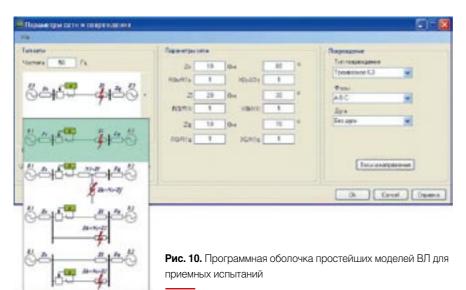



Рис. 8. Проверка тормозной характеристики дифференциальной защиты трансформатора





Рис. 9. Вариант организации проверочных работ

деляется в основном переключениями в цепях переменного тока и выходных сигналов комплекса и не затрагивает операции с микропроцессорными терминалами. Правильность восстановления цепей переменного тока и напряжения проверяется обычным методом контроля «под нагрузкой».

При проведении ИКП для расчета КЗ целесообразно использовать максимально простые и по возможности стандартизованные модели (например, рис. 10 для защит ВЛ), которые в первую очередь должны служить для проверки правильности реализации проекта комплекса РЗА, при которой проверяются логическо-функциональные связи, обмен сигналами и, главное, работоспособность всего комплекса в части реагирования на различные виды повреждений в энергосистеме.

## Техническое обслуживание ЦРЗА в эксплуатационных условиях

Для цифровых устройств РЗА доля отказов, связанных с износом и старением устройств, достаточно мала. Поэтому при профилактическом и последующих контро-



лях ЦРЗА объем проверок может быть существенно сокращен и в основу проверок могут быть положены, прежде всего, результаты приемных испытаний. Рассмотренная выше концепция проверок, позволяющая иметь в электронном виде информацию с результатами наладочных и приемных испытаний, которую легко возможно повторить в необходимых случаях, дает возможность, с минимальными затратами времени и средств, провести профилактические и последующие испытания. Одновременно решаются и вопросы организации необходимых форм документации, фиксирующей объем и результаты отдельных видов проверки.

С учетом изложенного, при первом профилактическом контроле ЦРЗА пользователю необходимо использовать записанную на электронном носителе программу проведения приемных испытаний, внеся необходимые корректировки в уставках и конфигурации, в случае, если они имели место в период между проверками. Возможно и использование результатов пусконаладочных испытаний, также заполняемых автоматически в электронном виде.

При проведении этих испытаний используется имеющаяся иерархическая структура проверки (рис. 2), выбирается проверяемое устройство (шкаф) с ЦРЗА и собирается схема подключения испытательного устройства к тестируемому ЦРЗА.

Далее из всего объема тестов выбирается необходимый объем проверок и запускается тестовая программа. В необходимых случаях, согласно указаниям программы, обеспечиваются ручные переключения, например, переключения ключей и оперативных накладок проверяемого шкафа с ЦРЗА.

#### **ЗАКЛЮЧЕНИЕ**

Рассмотренные элементы автоматизации пусконаладочных и приемных испытаний, а также технического обслуживания комплектных устройств с ЦРЗА позволяют существенно повысить качество работ и уменьшить вероятность отказов, вызываемых ошибками вследствие влияния «человеческого фактора». Естественно, при подготовке программного обеспечения проверки конкретных объектов потребуется «инжиниринг», заключающийся в привязке базовых программ к конкретному объекту. Однако, учитывая сложность ЦРЗА и ответственность решаемых задач, применение средств автоматизации при обслуживании ЦРЗА не имеет альтернативы. 

□

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Э.М. Шнеерсон. Цифровая релейная защита. Москва: Энергоатомиздат, 2007.
- 2. Э.М. Шнеерсон. Проектирование и эксплуатация – ключевые вопросы современной релейной зашиты. Релейшик. № 1. 2009.

#### мнение



Орлов Ю. Н. Заместитель начальника Центра инжиниринга электрооборудования Филиала ОАО «Инженерный центр ЕЭС» - «Фирма ОРГРЭС»

статьи, безусловно, актуальная и соответствует перспективному направлению по совершенствованию методов проверки устройств РЗА. Вместе с тем по статье имеется ряд вопросов и предложений.

Предлагаемые в статье проверки устройств РЗА рекомендуются к выполнению при пусконаладочных работах на энергообъектах и при дальнейшем их техническом обслуживании. При этом объемы проверок как бы идут в дополнение к работам, выполняемым в соответствии с действующими в отрасли РД 153-34.0-35.617-2001 («Правила технического обслуживания устройств релейной защиты, электроавтоматики, дистанционного управления и сигнализации электростанций и подстанций 110-750 кВ»). В то же время подготовка программ проверки требует определенного финансирования,

что в некоторых случаях может привести к повышению стоимости пусконаладочных работ.

Авторы статьи говорят о сокращении времени на проверку устройств РЗА. Но ведь предлагаемые проверки – только часть всех работ. Следовало бы это оценить в трудозатратах в общем объеме работ по наладке (например, в сравнении с методом при использовании при наладке тех же установок «Ретом» и ручном методе проверки функций).

Хотелось бы иметь также сведения по имеющемуся опыту практического внедрения предлагаемых методов проверки устройств РЗА и отзывах наладочного и эксплуатационного персонала об их эффективности (ведь

сборка схемы для проверки проводится также вручную и требует определенного опыта).

В свете предлагаемых проверок продолжает оставаться вопрос оптимизации методов и объемов тестирования, закладываемых разработчиками и изготовителями в выпускаемые устройства РЗА. Очевидно также, что в настоящее время требуется разработка и обсуждение «Общих технических требований к (установкам) устройствам автоматизированной для проверки устройств РЗА», а также подготовка новой редакции указанных выше Правил с детализацией Раздела 5 «Объемы работ при техническом обслуживании микропроцессорных устройств РЗА».























Гидроэнергетика России – основа устойчивого развития страны

IV ВСЕРОССИЙСКОЕ СОВЕЩАНИЕ ГИДРОЗНЕРГЕТИКОВ

Москва 2009, 1-3 октября, ВП «Электрификация»

Организатор: НП «Гидроэнергетика России»

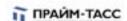
при поддержке Государственной думы РФ, Минэнерго РФ, РНК СИГБ

Совещание проводится

Научно-техническая выставка «Гидроэнергетика России» Организатор: ВП «Электрификация» www.expo-elektra.ru тел.: (499) 181-52-00 e-mail: blu@expo-elektra.ru bav@expo-elektra.ru

irina@expo-elektra.ru

#### КЛЮЧЕВЫЕ ВОПРОСЫ СОВЕЩАНИЯ


- Развитие гидроэнергетики как важнейший фактор устойчивого развития и повышения эффективности экономики страны.
   Задачи по формированию Государственной политики и законодательной поддержки гидроэнергетики как основы устойчивого развития страны.
   Состояние и перспективы развития гидроэнергетики России в современных условиях.
   Техническая политика в гидроэнергетике.
   Научно-исследовательский, проектно-изыскательский, строительно-монтажный и ремонтно-строительный комплекс. Состояние и направления развития.
   Проблемы и перспективы кадрового обеспечения функционирования и развития гидроэнергетики России.

тел.: (499) 120-03-72 www.hydropower.ru e-mail: info@hydropower.ru, golubevais@gidroogk.ru, shibanovae@gidroogk.ru

ГЕНЕРАЛЬНЫЙ ИНФОРМАЦИОННЫЙ СПОНСОР



ИНФОРМАЦИОННЫЕ СПОНСОРЫ




















Форум проводится для технических руководителей, инженеров и начальников отделов АСУ объектов тепло- и электроэнергетики, представителей проектных и наладочных предприятий, учебных организаций, а также системных интеграторов, работающих в области АСУТП, АСДУ, АСКУЭ на рынке энергетики. С докладами выступят представители ведущих инжиниринговых и проектных компании, производителей технологического оборудования и систем автоматизации для ТЭС, котельных и электросетевых предприятий.

## Основные вопросы Форума 2009:

- 1.Рынок производителей технологического и электротехнического оборудования для объектов энергетики. Анализ основных тенденций.
- 2. Проблемы автоматизации объектов энергетики. Состояние рынка в условиях кризиса.
- 3.Рынок комплексных АСУТП для предприятий теплоэнергетики. Обзор экономической и технологической составляющей. Комплексная АСУТП ТЭС на примере ПТК нового

поколения «Торнадо-N».

- 4.Проектирование и наладка систем автоматизации для предприятий энергетики.
- 5.«Локальная» автоматизация объектов энергетики. Типовые решения для АСУТП отдельных узлов ТЭС и других промышленных предприятий.
- 6.АСДУ, автоматизация объектов электроэнергетики, АСУТП подстанций, телемеханика, РЗА, комплексы противоаварийной автоматики, АСКУЭ.
- 7.Новости рынка промышленных контроллеров. Презентация российских и иностранных аппаратно-программных средств для создания АСУТП для объектов энергетики и других промышленных объектов.

Подробную информацию можно получить на странице Форума http://www.tornado.nsk.ru/forum2009. Регистрация участников и аккредитация СМИ по телефонам: (383) 36 33 800, 36 33 900 или электронной почте: marketing@tornado.nsk.ru.



VIII Международный Форум Современные Технологии Промышленной Автоматизации АСУТП объектов энергетики



6-7 октября 2009 г., Новосибирск

